

Ecological Systems and Learning Progressions: applications of basic principles across multiple scales of organization

John Moore¹, Laurel Hartley², Jennifer Doherty³, Cornelia Harris⁴, Alan Berkowitz⁴, Andy Anderson³

COLORADO STATE UNIVERSITY¹, UNIVERSITY OF COLORADO DENVER², MICHIGAN STATE UNIVERSITY³, CARY INSTITUTE OF ECOSYSTEM STUDIES⁴

Colorado State University Cary Institute University of California, Santa Barbara Michigan State University **Towson University** University of New Mexico University of Northern Colorado University of Wyoming Montana State University Arizona State University

Environmental Science Literacy

The capacity to understand and participate in evidencebased decision-making about socio-ecological systems.

Department of Ecosystem Science and Sustainability

Colorado State University

System Thinking

System Thinking is the process of understanding how components of a system interact and respond to disturbance, yet influence one another to act a whole.

Research Learning Progressions

Learning progressions are descriptions of increasingly sophisticated ways of thinking about a subject

Anchored at the lower end by what we know about how younger students reason

Anchored at upper end by what experts in the field believe students should understand when they graduate

		Elements of accounts	
Level of achievement	Type of account (explanations & predictions)	Structure & systems	Scientific principles
Level 4: Model-based accounts	Scientific, model- based accounts of how and why events happen	Multiple, detailed connected systems	Driving forces & constraining factors
Level 3: School science accounts	Primarily descriptions of what happens	Connected systems, including visible and some hidden components	Puts events in order, names processes, uses "school rules"
Levels 1 & 2: Force-dynamic accounts	Force-dynamic perspectives of events	Visible, familiar components of systems	Force-dynamic reasoning

Scientific Reasoning

What high school students should know and be able to do

Informal Ideas How children think about and make sense of the world

System Thinking

System Thinking is the process of understanding how components of a system interact and respond to disturbance, yet influence one another to act a whole.

The topics we study are organized as dynamic hierarchical systems.

The topics may include multiple principles operating simultaneously.

The relationships among the principles in terms of their relative importance to the topic change as one moves up and down the hierarchy.

The questions we ask when developing learning progression define a pivotal node, level, or scale within the hierarchy that serves as an entry point for the student.

Climate Change in the Arctic

Surface Temperature Anomaly, 64°N - 90°N, 1880-2011 (°C) (base period 1951-1980) (source: NASA GISS)

Control

Fertilized

Permafrost

Surface Temperature Anomaly, 64°N - 90°N, 1880-2011 (°C) (base period 1951-1980) (source: NASA GISS)

Fertilized

Aboveground

- Increase in shrub
- Decrease in mosses and lichens

Belowground

Increase in roots

Climate Warming/Increasing N Availability

Biology of Plants, Seventh Edition © 2005 W. H. Freeman and Company

The topics we study are organized as dynamic hierarchical systems.

The topics may include multiple principles operating simultaneously.

The relationships among the principles in terms of their relative importance to the topic change as one moves up and down the hierarchy.

The questions we ask when developing learning progression define a pivotal node, level, or scale within the hierarchy that serves as an entry point for the student.

Figure 31-1 Biology of Plants, Seventh Edition © 2005 W. H. Freeman and Company

The topics we study are organized as dynamic hierarchical systems.

Level Molecular/Cellular Individual/Species Population/Species Community/Multiple Species Ecosystem

Dominant Principle(s)

Genetics and Evolution Genetics and Evolution/Thermodynamics Genetics and Evolution/Thermodynamics Thermodynamics/Systems Theory Thermodynamics/Systems Theory

The topics may include multiple principles operating simultaneously.

Level Molecular/Cellular Individual/Species Population/Species Community/Multiple Species Ecosystem

Dominant Principle(s)

Genetics and Evolution Genetics and Evolution/Thermodynamics Genetics and Evolution/Thermodynamics Thermodynamics/Systems Theory Thermodynamics/Systems Theory

NPP

The relationships among the principles in terms of their relative importance to the topic change as one moves up and down the hierarchy.

Level	Dominant Principle(s)
Molecular/Cellular	Genetics and Evolution
Individual/Species	Genetics and Evolution/Thermodynamics
Population/Species	Genetics and Evolution/Thermodynamics
Community/Multiple Species	Thermodynamics/Systems Theory
Ecosystem	Thermodynamics/Systems Theory

Significance/Emergent Properties Arctic wolf EA. Snowy owl Arctic fox Weasel (ermine) Consumers Scale of Observation Ptarmigan Snow bunting Longspurt Wolf spider Vole Caribou Lemming Primary producers **Mechanisms** Figure 31-1 Biology of Plants, Seventh Edition

© 2005 W.H. Freeman and Company

The questions we ask when developing learning progression define a pivotal node, level, or scale within the hierarchy that serves as an entry point for the student.

Figure 31-1 Biology of Plants, Seventh Edition © 2005 W. H. Freeman and Company

Hartley et al. – Disturbance and communities

Doherty et al. – Disturbance and Evolution

Wyner and Doherty – Pivotal nodes and entry points

Energetic Food Webs

An Analysis of Real and Model Ecosystems

John C. Moore Peter C. de Ruiter

Oxford Series in Ecology and Evolution

http://ed.ted.com/lessons/dead-stuffthe-secret-ingredient-in-our-foodchain-john-c-moore