Learning Progression-Based Reasoning Tools for Understanding Water Systems

Presented at the Sustaining the Blue Planet Global Water Education Conference
September 14, 2011

Beth A. Covitt, University of Montana
Kristin L. Gunckel, University of Arizona
Ivan Salinas, University of Arizona
Charles W. Anderson, Michigan State University
Research Support

This research is supported in part by grants from the National Science Foundation: The Center for Curriculum Materials in Science (ESI-0227557), Targeted Partnership: Culturally relevant ecology, learning progressions and environmental literacy (NSF-0832173), and Tools for Reasoning about Water in Socio-ecological Systems (DRL-1020176). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Presentation Outline

• Intro to Research and PD
• Intro to Water Systems Learning Progression
• Learning Progression-Based Instruction
 – Describe levels of achievement
 – For each level, provide example of Tool use to support student learning
 – Identify affordances of Tools
• Description of Future Directions
Challenges

• Water-related issues (e.g., climate change, population growth, land use patterns) threaten continuing supply of high-quality fresh water

• Collective action is required as citizens play various roles
 – Private: Consumer, worker
 – Public: Voter, advocate, elected official

• Public understanding of science of water systems is thin
Environmental Science Literacy

... is the capacity to understand and participate in evidence-based decision-making about socio-ecological systems.

Informed citizens can...

- Understand and evaluate arguments of experts
- Choose actions consistent with their values
What We’ve Done

• Used research to articulate a learning progression (LP) describing span of students’ ways of understanding water systems

• Identified that very few students, even by high school, have achieved water systems literacy

• Used LP to develop responsive instructional approaches and tools (e.g., Reasoning Tools) to help students develop water systems literacy
Reasoning Tools Project

• Working w/middle school teachers in AZ & MT

• Summer workshop to introduce teachers to...
 – Learning Progression (LP) Framework
 – LP-Based Formative Assessments to support eliciting, analyzing and responding to students’ ideas
 – LP-Based Reasoning Tools to support development of more sophisticated water systems understandings

• During school year, teachers enact water instruction integrating above. We are collecting data as part of exploratory research to test and refine Tools.
Learning Progressions

“...are descriptions of the successively more sophisticated ways of thinking about a topic that can follow one another as children learn about and investigate a topic over a broad span of time (6 to 8 years).” (NRC, 2007)

LPs include...

– **Lower anchor**: Ideas and ways of viewing world that children bring to school

– **Upper anchor**: Scientific knowledge and practices needed for informed decision-making
LPs Versus Standards

• Focus on students’ ideas differs from traditional scope and sequence standards documents
• Traditional standards focus on what students should learn and when
• LPs recognize common conceptions students hold and challenges inherent in learning scientific concepts and discourse
 • Model of learning recognizes primary discourses, views learning science like learning a 2nd language
Lower Anchor: Force Dynamic Reasoning

- Linguistic theory (Pinker, 2007; Talmy, 1988)
- Perspective embedded in grammar that shapes how people talk, think and make sense of world
- Actors with purposes/needs confront antagonists (hindering forces)
- Events determined through interplay of countervailing powers
- Humans have most powers/abilities; non-living entities can be actors too
- Example: Tree’s purpose is to grow. Enablers include sunlight, soil, and water. Antagonists include drought and logging.
Upper Anchor: Scientific Model-Based Reasoning

General

• Phenomena are parts of connected, dynamic systems that operate at multiple scales according to scientific principles
• Models are abstractions of systems that focus on key features to explain and predict scientific phenomena

Water

• Water and substances move through connected systems
• Pathways are constrained by
 • Laws (e.g., conservation of matter)
 • Forces (e.g., gravity, pressure)
 • Constraining variables (e.g., permeability, topography, solubility)
Upper Anchor Loop Diagram

Human Decisions & Actions Impact Distribution & Quality of Fresh Water

Environmental Systems
- Surface Water System
 - Human Engineered Components (e.g., reservoirs, dams, irrigation, water treatment facilities)
- Atmospheric System
 - Human Engineered Components (e.g., airplane contrails)
- Soil/Groundwater System
 - Human Engineered Components (e.g., wells)
- Biotic System
 - Human Engineered Components (e.g., crops, livestock, biological water treatment)

Human Social and Economic Systems

Humans perceive, quantify and value ecosystem services, and take individual (private decisions and behaviors) and collective (public decisions and behaviors) actions.

Citizenship Practices:
- Inquiry
- Accounts (Explaining & Predicting)
- Decisions

Using science as a tool of citizenship – evaluating evidence based arguments to understand predicted outcomes of courses of action to inform decisions.

Ecosystem Services are Valued by People
(Freshwater of sufficient quantity, quality and distribution for supporting human and natural system functions)
Upper Anchor Loop Diagram

<table>
<thead>
<tr>
<th>Levels of Achievement</th>
<th>Progress Variables</th>
<th>Substances in Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moving Water</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 4: Qualitative model-based accounts | • Traces water through connected systems (multiple pathways/scales)
• Applies principles that govern movement of water | • Identifies and traces substances mixing, moving, and unmixing with water (multiple pathways/scales)
• Applies principles to reasoning about substances in water |
| 3: “School science” accounts | • Tells school science narratives
• Has difficulty describing processes at atomic-molecular scale
• Does not use principles | • Tells school science narratives
• Has difficulty describing processes at atomic-molecular scale
• Does not use principles |
| 2: Force-dynamic accounts with mechanisms | • Recognizes water can move and that there are mechanisms moving water
• **Uses force-dynamic thinking that invokes actors or enablers** | • Recognizes water quality can change
• Thinks of water quality in terms of bad stuff mixed with water
• Invokes actors or enablers to change water quality |
| 1: Force-dynamic accounts | • Views water as part of the background setting for actors
• **Does not view water in a location as connected to other water** | • Views water quality in terms of types of water (e.g. dirty water) |
Level 1: Force Dynamic Accounts*

- Focus on human actions or concerns
- View water in different systems as unconnected
- Provide accounts of first-hand, visible observations
- Water can appear and disappear
- Actors can change/move water without need for mechanisms
- Representations (e.g., maps) viewed literally, rather than as representations of physical systems in world

*Note characteristics identify how students do reason about water, not just what’s missing from their ideas
Level 1: Force Dynamic Accounts

<table>
<thead>
<tr>
<th>Question</th>
<th>How does water get into a river?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>It could get into a river by being rained into it. [E]</td>
</tr>
<tr>
<td>Indicator</td>
<td>Source of water is immediately visible.</td>
</tr>
</tbody>
</table>

What Students Need To Work On...
- Expanding awareness beyond what’s immediately visible
- Expanding understanding beyond simple water cycle diagram representation (one circular pathway)
- Experiences with how water systems are connected
- Conserving matter as it moves through systems
Instructional Context: Exploration (with maps handy) of where water in the river in our town comes from and goes to
Pathways Tool

Before
- In a cloud above Idaho
- In the groundwater
- Snow on ground in Anaconda
- Running off over the ground near Blackfoot River

Before
- Falling as rain in E. Missoula
- In groundwater near Milltown
- Running off over the ground in Clinton
- In Rattlesnake Creek

Before
- In Clark Fork River by Frenchtown
- In the atmosphere
- In Missoula Aquifer

After
- In Clark Fork River near Superior
- In a fish in the Clark Fork
- In a Mountain Water Well in Missoula
- In a cloud above Turah

After
- In a Mountain Water pipe heading to my house
- In my belly (I caught and ate the fish, but this is not very likely)
Pathways Tool Affordances

Emphasizes...
• Multiple pathways
• Conservation of matter --- water must come from somewhere and go somewhere
• Invisible pathways
• Connections between systems

Scaffolds...
• Thinking across spans of time and space
• Social construction of understanding
• Opportunities for scientific argumentation
Level 2:
Force Dynamic Accounts w/Mechanisms

- Describe connections among systems; but may be vague or inaccurate
- Describe simple and/or inaccurate mechanisms to move/change water (e.g., filter, water cycle)
- Use inanimate objects as agents to explain processes (e.g., clouds filter water)
- Water has natural tendencies (e.g., flow to connected places).
- Describe water quality in terms of objects in water (e.g., trash) or vague substances (e.g., pollution, chemicals).
Level 2: Force Dynamic Accounts w/Mechanisms

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why is there still water flowing in a river even when it hasn’t rained</td>
<td>Because it flows from bigger lakes into the rivers. [H]</td>
</tr>
<tr>
<td>recently?</td>
<td></td>
</tr>
</tbody>
</table>

Indicator: Water has natural tendency to flow from bigger to smaller bodies of water.

What Students Need To Work On...

- Building awareness of system structures, matter, and processes that may be hidden, invisible, or too big to see with eyes
- Shifting from force-dynamic to simple scientific explanations for processes (e.g., gravity as force rather than citing natural tendencies)
- Recognizing scales other than macroscopic (e.g., large, microscopic)
Where does the water start? Where can the water go? What is the process? What drives or moves the water? How? What are the constraining factors, and how do they work?

Instructional Context: It hasn’t rained in Missoula in over a month. Why is there still water in the Clark Fork River?
<table>
<thead>
<tr>
<th>Where does the water start?</th>
<th>Where can the water go? What is the process?</th>
<th>What drives or moves the water? How?</th>
<th>What are the constraining factors, and how do they work?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Topography/elevation - water flows to lower areas. Floodgates --- opened or closed to manage flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Topography and permeability – GW flow follows topography of impermeable layer. In river, water table is above ground.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temperature --- Water won’t runoff unless it first melts at temperature above 32°F. Topography – see above.</td>
</tr>
</tbody>
</table>
Drivers & Constraints Tool Affordances

• Focuses students on scientific explanations for pathways, especially driving forces and constraining variables

• Supports developing awareness of system structures, pathways, and processes

• Scaffolds social construction of understanding

• Scaffolds students in scientific argumentation (e.g., debating processes/likelihoods of possible pathways)
Level 3: School Science Accounts

- Retell stories about water cycle learned in school
- Put multiple events in order, but do not rely on driving forces or constraining variables to move or change water
- Trace water into hidden/invisible places (e.g., groundwater, water vapor) and describe invisible processes
- Describe systems and paths with moderate detail and some errors, especially in human-engineered systems
- Aware of atomic-molecular scale, but understands as “small particles” --- no electrostatic forces
- Identify different types of substances in water and some processes for mixing/unmixinig substances
If a water pollutant is put into the river at Town C, which towns (if any) would be affected by the pollution?

Response: [A] The pollution would get into the towns because the polluted water goes down the river and ends up in a different town.

Indicator: Identifies which way rivers flow on a map but does not identify forces such as gravity or constraining variables such as topography.
<table>
<thead>
<tr>
<th>Question</th>
<th>Identify one thing that would be in suspension and one thing that would be in solution in water. Draw a picture of each thing showing molecules and/or particles if you can.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
<td>Aware of smaller than visible matter. Confusion between microscopic and atomic-molecular scales.</td>
</tr>
</tbody>
</table>

![Diagram](image)

- **Suspension:** Dirt/mud
- **Solution:** Bacteria

In the diagram, the molecules and/or particles are represented by small circles, with labels indicating water and dirt/bacteria.
Level 3: School Science Accounts

What Students Need To Work On Developing...

• The need and knowledge to rely on principles and constraining variables to trace water and substances
• Detailed awareness of system structures and chemical identities
• Capacity to distinguish between microscopic and atomic-molecular scales, and to reason about these scales
Instructional Context: At a school, there is a football field near a creek. If fertilizer was applied to the field and then it rained, where could the fertilizer end up? In the creek? In groundwater? Evaporated with water and came down as fertilizer mixed with rain? In the grass on the field?

Question: Say you mixed some fertilizer with water. How small of particles do you think the fertilizer would break down into? Would the fertilizer in water form a solution or a suspension?
Scale Tool

Atomic-Molecular
Not visible Nanometer or smaller (<10⁻⁹ m)
Molecule

Microscopic
Visible with microscope (10⁻⁸ m to 10⁻⁴ m)
Cells

Macroscopic
Visible with naked eye
Millimeter (10⁻³ m) to Meter (10⁰ m) to Hectometer (10² m)
Water Drop Football Field

Landscape
Larger than what you can see at once
Kilometer or more (>10³ m)
Watersheds

Montana Watershed District Map
Tracing Mixtures With Water Tool

Substances mix and unmix with water and water moves through systems. How does this work?

Tracing Back

Where did the substance come from?

Where did the water come from?

How did the substance get into the water?

The Mixture

What’s mixed in the water?
(Teacher provides)

Where is the mixture now?
(Teacher provides)

What kind of mixture is it?
Suspension or Solution

How do you know?

Tracing Forward

If the water moves (new place) ___________________, will the substance stay mixed with the water? Yes or No

If no, how and why will it separate?

• Groundwater
• Creek
• Grass
• Atmosphere

Where will the substance end up next?

Groundwater
Creek
Grass
Atmosphere
Scale Tool Affordances

Scaffolds...

• Distinguishing scales for matter and systems
• Reasoning about how scale is important for tracing water and substances (e.g., solution versus suspension)
• Quantitative reasoning skills (e.g., converting units for different scales, estimating, working with scientific notation)
Tracing Mixtures w/Water Tool Affordances

Scaffolds...

• Reasoning about how scale impacts movement of substances (e.g., solution or suspension)

• Deeper reasoning about processes that mix, unmix and move substances with water (not just telling a story of where stuff goes --- have to explain WHY and HOW)

• Social construction of understanding and scientific argumentation
Future Directions

Help teachers use Water Systems Learning Progression to inform instruction including...

• Test and refine Reasoning Tools with teachers and students

• Test and refine Formative Assessment materials designed to help teacher elicit, analyze, and respond to students’ ideas

• Develop and share productive examples of how Tools and Formative Assessments can be used in school contexts
Questions? / Comments?

Contact

beth.covitt@umontana.edu
www.umt.edu/watertools